翻訳と辞書 |
Alperin–Brauer–Gorenstein theorem : ウィキペディア英語版 | Alperin–Brauer–Gorenstein theorem In mathematics, the Alperin–Brauer–Gorenstein theorem characterizes the finite simple groups with quasidihedral or wreathed〔A 2-group is wreathed if it is a nonabelian semidirect product of a maximal subgroup that is a direct product of two cyclic groups of the same order, that is, if it is the wreath product of a cyclic 2-group with the symmetric group on 2 points.〕 Sylow 2-subgroups. These are isomorphic either to three-dimensional projective special linear groups or projective special unitary groups over a finite fields of odd order, depending on a certain congruence, or to the Mathieu group . proved this in the course of 261 pages. The subdivision by 2-fusion is sketched there, given as an exercise in , and presented in some detail in . ==Notes== 〔
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Alperin–Brauer–Gorenstein theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|